direct product, p-group, abelian, monomial
Aliases: C23×C4, SmallGroup(32,45)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C23×C4 |
C1 — C23×C4 |
C1 — C23×C4 |
Generators and relations for C23×C4
G = < a,b,c,d | a2=b2=c2=d4=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, cd=dc >
Subgroups: 118, all normal (4 characteristic)
C1, C2, C2, C4, C22, C2×C4, C23, C22×C4, C24, C23×C4
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C23×C4
(1 6)(2 7)(3 8)(4 5)(9 23)(10 24)(11 21)(12 22)(13 19)(14 20)(15 17)(16 18)(25 29)(26 30)(27 31)(28 32)
(1 9)(2 10)(3 11)(4 12)(5 22)(6 23)(7 24)(8 21)(13 25)(14 26)(15 27)(16 28)(17 31)(18 32)(19 29)(20 30)
(1 27)(2 28)(3 25)(4 26)(5 30)(6 31)(7 32)(8 29)(9 15)(10 16)(11 13)(12 14)(17 23)(18 24)(19 21)(20 22)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,6)(2,7)(3,8)(4,5)(9,23)(10,24)(11,21)(12,22)(13,19)(14,20)(15,17)(16,18)(25,29)(26,30)(27,31)(28,32), (1,9)(2,10)(3,11)(4,12)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,27)(2,28)(3,25)(4,26)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,6)(2,7)(3,8)(4,5)(9,23)(10,24)(11,21)(12,22)(13,19)(14,20)(15,17)(16,18)(25,29)(26,30)(27,31)(28,32), (1,9)(2,10)(3,11)(4,12)(5,22)(6,23)(7,24)(8,21)(13,25)(14,26)(15,27)(16,28)(17,31)(18,32)(19,29)(20,30), (1,27)(2,28)(3,25)(4,26)(5,30)(6,31)(7,32)(8,29)(9,15)(10,16)(11,13)(12,14)(17,23)(18,24)(19,21)(20,22), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,6),(2,7),(3,8),(4,5),(9,23),(10,24),(11,21),(12,22),(13,19),(14,20),(15,17),(16,18),(25,29),(26,30),(27,31),(28,32)], [(1,9),(2,10),(3,11),(4,12),(5,22),(6,23),(7,24),(8,21),(13,25),(14,26),(15,27),(16,28),(17,31),(18,32),(19,29),(20,30)], [(1,27),(2,28),(3,25),(4,26),(5,30),(6,31),(7,32),(8,29),(9,15),(10,16),(11,13),(12,14),(17,23),(18,24),(19,21),(20,22)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
C23×C4 is a maximal subgroup of
C23.7Q8 C23.34D4 C23.8Q8 C23.23D4 C24.4C4 C22.19C24
C23×C4 is a maximal quotient of C22.11C24 C23.32C23 C23.33C23 Q8○M4(2)
32 conjugacy classes
class | 1 | 2A | ··· | 2O | 4A | ··· | 4P |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 |
type | + | + | + | |
image | C1 | C2 | C2 | C4 |
kernel | C23×C4 | C22×C4 | C24 | C23 |
# reps | 1 | 14 | 1 | 16 |
Matrix representation of C23×C4 ►in GL4(𝔽5) generated by
4 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 4 | 0 |
0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 2 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(5))| [4,0,0,0,0,4,0,0,0,0,1,0,0,0,0,1],[4,0,0,0,0,1,0,0,0,0,4,0,0,0,0,4],[4,0,0,0,0,1,0,0,0,0,4,0,0,0,0,1],[2,0,0,0,0,2,0,0,0,0,2,0,0,0,0,1] >;
C23×C4 in GAP, Magma, Sage, TeX
C_2^3\times C_4
% in TeX
G:=Group("C2^3xC4");
// GroupNames label
G:=SmallGroup(32,45);
// by ID
G=gap.SmallGroup(32,45);
# by ID
G:=PCGroup([5,-2,2,2,2,-2,80]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations